

LA-UR-21-25684

Approved for public release; distribution is unlimited.

Title: Nondestructive Assay for Nuclear Safeguards

Author(s): Trahan, Alexis Chanel

Intended for: MTV Summer School webinar

Issued: 2021-06-16

Nondestructive Assay for Nuclear Safeguards

LA-UR-21-

Alexis Trahan

June 17, 2021

Safeguards and the International Atomic Energy Agency

International Nuclear Safeguards

- Set of technical measures applied by the International Atomic Energy Agency (IAEA) to independently verify that nuclear materials are not being diverted to illicit purposes
- Safeguards play a central role in international nonproliferation efforts, i.e., in preventing the spread of nuclear weapons
- Tools and methods for implementing safeguards at nuclear facilities include:
 - Nuclear Material Accountancy
 - Nondestructive Assay (NDA)
 - Destructive Analysis (DA)
 - Containment & Surveillance
 - Environmental Sampling
 - Unattended and Remote Monitoring

The Nuclear Fuel Cycle * Reprocessing of spent nuclear fuel including MOX is not practiced in the U.S. Note: The NRC has no regulatory role in mining uranium.

The International Atomic Energy Agency

The International Atomic Energy Agency

- Currently, the IAEA is working to advance the following initiatives (among many others...)
 - Universal acceptance of the Additional Protocol
 - Safeguards-by-design
 - Integrated within a facility's design, covering safeguards and security
 - Unattended monitoring & data integration
 - Robust data management systems to reduce on-site inspector presence
 - State-level Concept
 - Assessing each State as a whole
 - Developing unified and consistent State-Level Approaches
 - Establishing safeguards measures based on path attractiveness rather than simply material attractiveness

Nondestructive Assay

Nondestructive Assay

- NDA is the most commonly employed technique for material accountancy
- · A series of gamma or neutron detectors are typically used to measure radiation emitted from the sample of interest
- Energy, timing, and intensity of radiation may be correlated to isotope type and quantity in the sample

- Passive interrogation requires good signal intrinsic to sample (²⁴⁰Pu, ²⁵²Cf)
- Active interrogation requires fissile material or material prime for gamma interactions (²³⁵U, ²³⁹Pu)

Neutrons and Photons as NDA Signatures

- Nucleus (gamma-ray)
- Nuclear collision (gammaray)
- Electron cloud (x-ray)

Energy

High Z material

HPGe, Scintillators, NaI, CZT, LaBr

Neutrons

History of Neutron Counting for NDA

TOTAL NEUTRON

- Record the total number of neutrons detected in a certain amount of time
- Accurate assays can be obtained only for very few types of SNM

COINCIDENCE COUNTING

- Record the number of times two neutrons arrive within a set time window (gate)
- Wide application for international safeguards
 - focused on verifying declared materials

NEUTRON MULTIPLICITY COUNTING

- Extension of neutron coincidence counting
- Record the number of times we detect 2, 3, 4, etc. neutrons within a gate
- It improves neutron assay accuracy dramatically by adding more measured information

Neutron Coincidence Counter

Pulse-processing Electronics

- ³He neutron detectors
- Fission source (Pu) surrounded by neutron detectors
- Emission of multiple prompt neutrons from fission detected as coincident neutron events
- Multiplicity information is used to calculate the mass of fissile isotopes

Neutron Coincidence Counting

Neutron Coincidence Counting

Spontaneous Fission

Detected

Neutrons

Rossi-Alpha Distribution

Epithermal Neutron Multiplicity Counter (ENMC)

- $\varepsilon = 65.0\%$
- $\tau = 22.0 \, \mu sec$
- 121 tubes
- 27 preamplifier channels

Advanced Experimental Fuel Counter

Advanced Experimental Fuel Counter

Active Doubles - Passive Doubles - Cf Doubles = Net Active Doubles

Gamma Rays

Photons

Generic Assay Equation

$$M_{SNM} = \frac{R_{Rad} \times CF}{Cal}$$

M_{SNM} = Mass of special nuclear material

R_{Rad} = Measured radiation rate (counts per unit time) from SNM item

CF = Correction for losses due to:

- item self absorption
- container absorption
- measurement system electronics

Cal = Calibration constant

FRAM

- FRAM is an isotopic analysis code nominally designed for plutonium and uranium.
- Fixed-energy Response-function Analysis with Multiple efficiencies.
- Self-calibration using several gamma-ray peaks.
- User-editable analysis parameters.
- Analyze gamma ray data from 30keV to >1MeV of HPGe, CdTe, CZT, and LaBr3 detector.

Peak Fitting

- FRAM uses linear least squares to fit the peaks of the HPGe spectra.
- FRAM uses a nonlinear least squares fit technique, combining the Powell's minimization method with the linear least squares fit to fit the peaks of the LaBr3 and CZT spectra.

Passive Gamma Emission Tomography (PGET)

- Three simultaneous measurements: gross neutron, gamma spectroscopy, and 2D emission tomography
- Create an axial image of emission locations to detect pinlevel diversions
- Measurements take 3-5 minutes

Mayorov et al., IEEE, 2017

- Neutron data are used for BU, spectroscopy data for CT or to verify non-fuel items
- Has been tested for burnups from 5.7-58 GWd/tU and cooling times from 1.9-27 years

Heat

Calorimetry

- Well-established, precise method of NDA
- Uses thermal power generated by radioactive decay in the sample to determine the mass of special nuclear material
- Heat flow calorimetry is most commonly used for materials control and accounting
- 60 Wheatstone bridge calorimeters currently being used for Pu and tritium measurements at LANL
- Bulk measurements can be taken without issues from absorption or self-shielding
- Takes much longer than other NDA techniques

Microcalorimetry

- Ultra-high energy resolution microcalorimeter technology offers a path to overcome NDA performance limits
 - 10-50x better energy resolution than semiconductor detectors
- Improve economics and performance of safeguards and material accounting approaches

Decay energy spectroscopy

Microcalorimeters measure the heat energy of individual photons or nuclear decays

Potential to improve nondestructive measurements of ²³⁵U enrichment

Safeguards Research at LANL

LANL Support

Over 50 years of support for the IAEA through...

Technology development

Training

Expertise

Updated PANDA Manual

- An updated version of the PANDA manual (published in 1990) will be released soon
- New addenda
- New technologies
- New characterization methods
- New electronics
- ...much more!

Thank you!

Questions?

